Übersicht über wichtige Begriffe,Konstanten,Größen Gesetze

Stoffgebiet : Thermodynamik / Kernphysik

Begriff,etc.	Zeichen	Erläuterung	Einheit / Zahlenwert	Bemerkungen
Kernladungszahl	Z	Protonenzahl eines Atoms ⇔ Ordnungszahl im Periodensystem	keine	Gleich bei Isotopen
Neutronenzahl	N	Neutronenzahl eines Atoms N = A - Z	keine	Unterschiedlich bei Isotopen
Massenzahl	Α	Auf ganze Zahlen gerundete Atommasse ⇔ Anzahl der Nukleonen (Kernteilchen)	keine	Unterschiedlich bei Isotopen
Atomare Masseneinheit	u	Ein Zwölftel der Masse des Kohlenstoffisotops ¹² C	u = 1,6605 * 10 ⁻²⁷ kg	
Relative Atommasse	A _r	Verhältniszahl zwischen Masse eines Atoms und atomarer Masseneinheit	keine	Gleicher Zahlenwert wie Molekülmasse
Relative Molekülmasse	$M_{\rm r}$	Verhältniszahl zwischen Masse eines Moleküls und atomarer Meinheit	keine	Gleiche Zahl wie Atommasse
Atommasse	M_A	Masse eines Atoms in u	kg	
Molekülmasse	M _M	Masse eines Moleküls in u ; Summe der Atommassen des Moleküls	kg	
Teilchenmasse	M _T	Sammelbegriff für Masse eines Atoms oder Moleküls	kg	
Stoffmenge	n	Ein System hat die Stoffmenge von 1 mol,wenn es aus so vielen Teilen besteht,wie 12Gramm des Kohlenstoffisotops ¹² C!	1 mol ⇔ 6,022 * 10 ²³ Teilchen	n = m * kg * kmol / (Mr * kg)
Molvolumen	V _m	Volumen eines Mols eines Stoffes (gleich was für Teilchen es sind) pro Mol (Molmasse = Volumen / Stoffmenge)	. m³ / mol	M _{V 0} = 22,414 dm ³ / mol bei Normbedingung : (0°C;101,3 kPA)
Molmasse	М	Masse eines Mols eines Stoffes (Man erhält sie, wenn man die Zahl der Teilchenmasse mit der Einheit g mol (Gramm pro mol) versieht!	kg / mol	
Avogadro - Konstante	N _A	Anzahl der Teilchen in 12 Gramm von ¹² C (Teilchenzahl in 1 mol)	$N_A = 6,022 * 10^{23} / mol$	
Universelle Gaskonstante	R		R = 8,315 kJ / (K * kmol)	
Temperatur	Т; Э	Maß für die mittlere Bewegungsenergie der ungeordneten Bewegung aller Teilchen eines Körpers	K; °C	
Innere Energie	U	Diejenige Energie, die ein Körper auf Grund der <u>ungeordneten Bewegung</u> seiner Teilchen hat; Summe aus der kinetischen und potentiellen Energie aller Teilchen des Körpers.	Nm; Ws; J	Nicht vom Bewegungszustand des Körpers abhängig!

Satz / Gesetz - Bezeichnung		Formulierung / Inhalt	Bemerkungen/ Datum / etc.
Allgemeine Gasgleichung		Aussage über Zusammenhang zwischen p; T, V einer abgeschlossenen Gasmenge	P * V / T = konstant
Sonderfälle der allg.Gasgleichung:			
Boyle-Marriotte	T = konstant	Dann gilt: $p * V = konstant bzw.$ $p_{1} * V_{1} = p_{2} * V_{2}$; p umgekehrt proportional V	Isotherm(e)
Gay - Lussac	p = konstant	Dann gilt: V/T = konstant bzw. $V_1/V_2 = p_1/p_2$; p proportional V	Isobar(e)
Amontons	V = konstant	Dann gilt: p/T = konstant bzw. $p_1/p_2 = T_1/T_2$; p proportional T	Isochor(e)
Universelle Gasgleichung		P * V = n * R * T; n: Stoffmenge in mol; R: universelle Gaskonstante (siehe Blatt vorher)	
Adiabatische Zustandsänderung		Eine Zustandsänderung einer Gasmenge heißt adiabatisch, wenn keine Wärme ausgetauscht wird.	Q = 0! "adiabate "

Satz / Gesetz - Bezeichnung	Formulierung / Inhalt	Bemerkungen/ Datum / etc.
I . Hauptsatz der Thermodynamik		W positiv: am System wird
$\Delta U = Q + W$	(abgegeben) wird und der Arbeit die am System (vom System) geleistet wird !	W negativ : vom System wird
2.Hauptsatz der Thermodynamik	→ Wärme geht von selbst nur von einem System höherer Temperatur zu einem System niederer	
-verschiedene Formulierungen-	Temperatur.	
	→ Es ist unmöglich ein perpetuum mobile 2.Art zu konstruieren	
	(Maschine entzieht ,periodisch arbeitend , einem Körper Wärme und gibt mechanische Arbeit ab)	
3. Hauptsatz der Thermodynamik	Es ist nicht möglich einen Körper bis zum absoluten Nullpunkt abzukühlen	

Begriff	Erläuterung	Bemerkung
System	Begrenzter Teil des Universums ,welchen man genauer betrachtet; kann aus verschiedenen	Modellbegriff
Man unterscheidet (siehe unten):	Dingen bestehen; der Rest bildet die Umgebung	
-abgeschlossenes System	Kein Stofftransport u.Energietransport über Systemgrenzen ,keine Wechselwirkung mit Umgebung	100 % -ig nicht möglich
- geschlossenes System	Kein Stofftransport; aber Energietransport über Systemgrenzen erlaubt	
- offenes System	Stoff – und Energietransport über Systemgrenzen erlaubt	